
THE VANISHING CONJECTURE FOR MAPS OF TOR,
SPLINTERS, AND DERIVED SPLINTERS

LINQUAN MA

Abstract. This is an extended version of the lecture notes for the UIC homological con-
jecture workshop. We include a solution to Exercise 2.7, and add some further observation
on the vanishing conjecture for maps of Tor in the appendix.

1. The vanishing conjecture for maps of Tor

In [HH95], Hochster and Huneke proposed the following vanishing conjecture for maps of
Tor:

Conjecture 1.1. Let A be a regular domain, let R be a module-finite and torsion-free ex-
tension of A, and let R → S be any homomorphism from R to a regular ring S. Then for
every A-module M and every i ≥ 1, the map TorAi (M,R)→ TorAi (M,S) vanishes.

This is proved by Hochster-Huneke when A,R, S all have equal characteristic [HH95,
Theorem 4.1], using weakly functorial big Cohen-Macaulay algebras. Before we discuss the
proof we first observe some applications that address the importance of Conjecture 1.1.

Proposition 1.2. The vanishing conjecture for maps of Tor implies the monomial conjec-
ture, and hence the direct summand conjecture.

Proof. Let (R,m) be a complete local domain and let x1, . . . , xd be a system of parameters
of R (we may take x1 = p in mixed characteristic). If the monomial conjecture fails, then
we have xt1x

t
2 · · ·xtd = r1x

t+1
1 + · · · + rdx

t+1
d for some t and some r1, . . . , rd ∈ R. By Cohen’s

structure theorem, we have a module-finite extension A → R such that A is a complete
regular local ring and x1, . . . , xd is a system of parameters of A.

Let M = A/(xt+1
1 , . . . , xt+1

d , xt1x
t
2 · · ·xtd) and S = R/m, the residue field of R. Then the

vanishing conjecture for maps of Tor implies that the map

TorA1 (A/(xt+1
1 , . . . , xt+1

d , xt1x
t
2 · · ·xtd), R)→ TorA1 (A/(xt+1

1 , . . . , xt+1
d , xt1x

t
2 · · ·xtd), R/m)

is the zero map. The minimal free resolution of M over A has the form: · · · → Ad+1 → A→ 0
where the free generators of Ad+1 are mapped to xt1x

t
2 · · · xtd, xt+1

1 , . . . , xt+1
d . The relation

(−1, r1, . . . , rd) represents an element of TorA1 (A/(xt+1
1 , . . . , xt+1

d , xt1x
t
2 · · ·xtd), R) and so we

know it maps to 0 in Tor1
A(A/(xt+1

1 , . . . , xt+1
d , xt1x

t
2 · · ·xtd), R/m) ∼= (R/m)d+1. But this is a

contradiction because we have a unit in the relation (1, r1, . . . , rd) in the first component. �

Remark 1.3. In the above proof we apply Conjecture 1.1 to R mixed characteristic and
S = R/m a field (and thus equal characteristic). We will see later that even if we restrict
ourselves to A,R, S all mixed characteristic, Conjecture 1.1 still implies the direct summand
conjecture (Theorem 2.11).

From now on, we always assume A,R, S all have the same characteristic.
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Proposition 1.4. The vanishing conjecture for maps of Tor implies that direct summands
of regular rings are Cohen-Macaulay.

Proof. Let R be a direct summand of a regular ring S. We want to show that R is Cohen-
Macaulay. The question is local on R, so we may replace R by its localization at a prime
ideal P and replace S by SP . Therefore we may assume (R,m) is local. Next we can take the
completion of R with respect to m and replace S by its completion at mS (all the hypothesis
are preserved by the exercises below). Also notice that S =

∏
Si is a product of regular

domains, if (R,m)→ S splits then there exists i such that R→ Si splits. Therefore we can
assume (R,m) is complete local, R → S splits, and S is a regular domain (and hence R is
also a domain).

Now by Cohen’s structure theorem, we have a module-finite extension A → R such that
A is a complete regular local ring. Let x1, . . . , xd be a regular system of parameters of A.
Now we apply the vanishing conjecture for maps of Tor to M = A/(x1, . . . , xd). We have

TorAi (A/(x1, . . . , xd), R)→ TorAi (A/(x1, . . . , xd), S)

vanishes for all i ≥ 1. However, we also know that this map is injective because R→ S is a
split injection. Thus we have

TorAi (A/(x1, . . . , xd), R) = Hi(x1, . . . , xd, R) = 0

for all i ≥ 1. This implies x1, . . . , xd is a regular sequence on R and hence R is Cohen-
Macaulay. �

Exercise 1.5. Prove that if S is regular and J ⊆ S, then the completion of S with respect
to J is also regular.

Exercise 1.6. Prove that if (R,m)→ S is split, then R̂→ ŜmS is also split.

Remark 1.7. In fact, Conjecture 1.1 implies that direct summand of regular rings are pseudo-
rational. We refer to [Ma15, Proposition 3.4] for a more general result.

Our next goal is to prove the vanishing conjecture for maps of Tor using the weakly
functorial big Cohen-Macaulay algebras. Recall that a (not necessarily finitely generated)
(R,m)-module M is big Cohen-Macaulay if one system of parameters of R is a regular
sequence on M , it is called balanced big Cohen-Macaulay if every system of parameters of
R is a regular sequence on M . A (balanced) big Cohen-Macaulay algebra is an R-algebra
that is (balanced) big Cohen-Macaulay as an R-module.

We state the following remarkable result of Hochster-Huneke [HH95].

Theorem 1.8 (Existence of weakly functorial big Cohen-Macaulay algebras). We can assign
to every equicharacteristic excellent local domain R a balanced big Cohen-Macaulay algebra
BR in such a way that if R → S is a local homomorphism of excellent local domains (of
equicharacteristic), then the map extends to a map BR → BS; i.e., there exists a commutative
diagram:

BR
// BS

R //

OO

S

OO

In fact, in characteristic p > 0, we can take BR = R+, the absolute integral closure of R,
i.e., the integral closure of R inside an algebraic closure of its fraction field.
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The proof of Theorem 1.8 in characteristic 0 is a delicate reduction to p > 0 argument,
and the result in characteristic p > 0 was proved in [HH92]. A simpler proof that R+ is
balanced big Cohen-Macaulay in characteristic p > 0 was later found in [HL07], where it
follows from the following crucial local cohomology annihilating result [HL07, Lemma 2.2].

Theorem 1.9. Let (R,m) be a local domain of characteristic p > 0 that is a homomorphic
image of a Gorenstein local ring. Let N ⊆ Hj

m(R) be a Frobenius stable submodule of fi-
nite length. Then there exists a module-finite extension S of R such that the natural map
Hj

m(R)→ Hj
m(S) sends N to 0.

In characteristic 0 or mixed characteristic, R+ is not a balanced big Cohen-Macaulay
algebra in general.

Exercise 1.10. Let (R,m) be a complete local domain. Prove the following:

(1) If R has characteristic 0, then R+ is big Cohen-Macaulay if and only if dimR ≤ 2.
(2) If R has mixed characteristic, then R+ is big Cohen-Macaulay if dimR ≤ 2, and is

not big Cohen-Macaulay if dimR ≥ 4.

The only remaining open case about big Cohen-Macaulayness of R+ is the following:

Question 1.11. Let (R,m) be a complete local domain of dimension three of mixed charac-
teristic. Is R+ balanced big Cohen-Macaulay?

We state a related interesting question of Lyubeznik:

Question 1.12. Let (R,m) be a complete local domain of mixed characteristic. Is R+/
√
pR+

balanced big Cohen-Macaulay over R/pR?

To prove Conjecture 1.1 in equal characteristic we need one more lemma:

Lemma 1.13. Let (A,m) be a regular local ring. Then a (not necessarily finitely generated)
A-module M is balanced big Cohen-Macaulay if and only if M is faithfully flat over A.

Proof. If M is faithfully flat over A, then every system of parameters (x1, . . . , xd) is a regular
sequence in M (since they form a regular sequence on A and we know that mM 6= M).

Now supposeM is a balanced big Cohen-Macaulay A-module. We will show TorAi (N,M) =
0 for all finitely generated A-module N and every i > 0. We use descending induction. This
is clearly true when i > d since A has finite global dimension d. Suppose TorAk+1(N,M) = 0

for all N , we want to show TorAk (N,M) = 0 for all N . By considering a prime cyclic
filtration of N , it is enough to prove this for N = R/P . Let h = htP . We can pick a
regular sequence x1, . . . , xh ∈ P . Now P is an associated prime of (x1, . . . , xh) so we have
0→ R/P → R/(x1, . . . , xh)→ C → 0. The long exact sequence for Tor gives:

TorAk+1(C,M)→ TorAk (R/P,M)→ TorAk (R/(x1, . . . , xh),M).

Now TorAk (R/(x1, . . . , xh),M) = Hk(x1, . . . , xh,M) = 0 because x1, . . . , xh is a regular se-
quence on M , and TorAk+1(C,M) = 0 by induction. It follows that TorAk (R/P,M) = 0. �

Proof of Conjecture 1.1 in equal characteristic. Clearly by a direct limit argument, we may
assume M is a finitely generated R-module. If the map

TorAi (M,R)→ TorAi (M,S)
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is nonzero then there exists a prime ideal P of S such that the map remains nonzero after
localizing at P . We may thus assume S is local. Next we localize A, R, M at the prime
ideal of A that is the contraction of the maximal ideal of S, and then replace A, M , R by
their completions. Therefore, we may assume that A, S are both complete regular local
rings. The kernel of the map R → S contains a minimal prime P of R. Since A → R
is torsion-free, A → R/P is still a module-finite extension. Thus we have a factorization
A→ R→ R/P → S, which induces

TorAi (M,R)→ TorAi (M,R/P )→ TorAi (M,S),

thus it suffices to show the second map is zero. Hence by replacing R by R/P we may assume
R is a complete local domain.

By Theorem 1.8, we have a commutative diagram:

BR
// BS

R //

OO

S

OO

where BR and BS are balanced big Cohen-Macaulay algebras for R and S respectively. This
induces commutative diagram:

TorAi (M,BR) // TorAi (M,BS)

TorAi (M,R) //

OO

TorAi (M,S)

OO

Since BR is a balanced big Cohen-Macaulay algebra over R (and hence also over A), it is
faithfully flat over A by Lemma 1.13 so TorAi (M,BR) = 0 for all i ≥ 1. Moreover, by Lemma
1.13 again BS is faithfully flat over S since it is balanced big Cohen-Macaulay over S, thus
TorAi (M,S) → TorAi (M,BS) is injective. Chasing the diagram above we get that the map
TorAi (M,R)→ TorAi (M,S) vanishes for all i ≥ 1. �

Exercise 1.14. Give an example to show that Conjecture 1.1 fails in general if A → R is
module-finite but R is not torsion-free as an A-module.

Exercise 1.15. Prove that in characteristic p > 0, Conjecture 1.1 holds as long as S splits
from all its module-finite extensions (such S is called a splinter, we will discuss splinters in
more details later).

Exercise 1.16. Prove that Conjecture 1.1 implies the following: Let (R,m) be a complete
local domain and let P be a nonzero prime ideal of R such that R/P is a regular local ring
of dimension d. Then the induced map Hd

m(R)→ Hd
m(R/P ) vanishes.

1.1. Strong direct summand conjecture. Work of Ranganathan [Ran00] shows that the
vanishing conjecture for maps of Tor is equivalent to the following strong direct summand
conjecture in all characteristics.

Conjecture 1.17. Let R → S be a module-finite domain extension. Suppose R is regular
local and x is part of a regular system of parameters of R (i.e., R and R/xR are both regular).
Let Q be a height one prime ideal of S lying over xR. Then xR is a direct summand of Q
considered as R-modules.
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We will not prove the equivalence here, the interested reader can refer to [Ran00, Chapter
5]. But we mention that this is indeed a huge generalization of the direct summand conjec-
ture: since we have xR → xS ⊆ Q, if xR → Q splits then so is xR → xS, divide by x we
see R→ S splits.

1.2. Recent progress on the homological conjectures. Recently, the direct summand
conjecture was proved by Yves André using perfectoid spaces [And16b], [And16a] (a simpler
proof can be found in [Bha16]). It was also established in [And16a] that big Cohen-Macaulay
algebra exists for complete local domains in mixed characteristics, and even more, for any
injective homomorphism R→ S between complete local domains, one can construct weakly
functorial big Cohen-Macaulay algebras [And16a, Remarque 4.2.1].

2. Connections with splinters and derived splinters

Throughout this section, all rings are Noetherian and excellent, all schemes are Noetherian,
excellent, and separated (in fact to avoid pathology, it is harmless to assume that all rings
and schemes are essentially of finite type over a field or a complete DVR).

Definition 2.1. A domain S (resp., an integral scheme X) is called a splinter, if for every
module-finite extension T of S (resp., every finite surjective map Y → X), the natural map
S → T (resp., OX → OY ) is split in the category of S-modules (resp., OX-modules).

Exercise 2.2. Prove that if S is a splinter, then S is normal. Moreover, prove that in
characteristic 0, S is a splinter if and only if S is normal.

It turns out that even in characteristic p > 0, splinters are still mysterious.

Conjecture 2.3. Let (S, n) be an excellent local domain of characteristic p > 0. Then S is
a splinter if and only if S is strongly F -regular.

It is well known that strong F -regularity (in fact even weak F -regularity) implies splinter
[HH90].1 The difficult part is the other direction. The best partial results of this conjecture
can be found in [Sin99] and [CEMS14].

Below we sketch a proof that splinters in characteristic p > 0 are F -rational using Theorem
1.9, which already indicates the dramatic difference with the characteristic 0 case (for deeper
results we refer to [Smi94]). Recall that an excellent local domain (R,m) of characteristic
p > 0 is called F -rational if it is Cohen-Macaulay and Hd

m(R) is simple in the category of
modules with Frobenius action (i.e., there is no nontrivial proper Frobenius stable submodule
of Hd

m(R)).

Exercise 2.4. Prove that if an excellent local domain (R,m) is F -rational on SpecR−{m},
then the largest proper Frobenius stable submodule of Hd

m(R) has finite length.

Theorem 2.5. Let (S, n) be a local domain of characteristic p > 0 that is a homomorphic
image of a Gorenstein local ring. If S is a splinter, then S is F -rational.

Proof. We pick a counter-example (S, n) of smallest dimension. Since the splinter property
localizes, we know that (S, n) is F -rational on the punctured spectrum SpecS−{n}. Exercise
2.4 implies that the largest proper Frobenius stable submodule of Hd

n (S) has finite length.

1As we will not use deep results in tight closure theory, we omit the precise definition of F -regularity. The
interested reader should refer to [HH90].
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Call this module N . By Theorem 1.9, N maps to 0 in Hd
n (T ) for some module-finite extension

T of S. But since S is a splinter, Hd
n (S)→ Hd

n (T ) is injective. Hence N = 0 and thus Hd
n (S)

is simple as a module with Frobenius action.
It remains to show S is Cohen-Macaulay. We know H i

n(S)→ H i
n(S

+) is injective because
S is a splinter. But for i < d, H i

n(S
+) = 0 since S+ is balanced big Cohen-Macaulay by

Theorem 1.8. This implies H i
n(S) = 0 for i < d and so S is Cohen-Macaulay. �

In mixed characteristic, some experiments in low dimension show that splinters behave
more like characteristic p > 0 situation.

Exercise 2.6. Let k be a perfect field and a, b, c positive integers. Prove that k[x, y, z]/(xa+
yb + zc) is always a splinter if k has characteristic 0. Prove that k[x, y, z]/(xa + yb + zc) is a
splinter in characteristic p� 0 if and only if 1

a
+ 1

b
+ 1

c
> 1.

Exercise 2.7. Let Zp be the p-adic integers and a, b, c positive integers. Prove that, when
p� 0, Zp[y, z]/(pa + yb + zc) is a splinter if and only if 1

a
+ 1

b
+ 1

c
> 1.

To the best of the author’s knowledge, the following question is open.

Question 2.8. Let (R,m) be a splinter in characteristic p > 0 or mixed characteristic. Is R[x]
or R[[x]] still a splinter?

To discuss the connection between splinters and the vanishing conjecture for maps of Tor,
we begin with the following definition from [Ma15].

Definition 2.9. We say a local domain (S, n) satisfies the vanishing conditions for maps
of Tor, if for every A → R → S such that A is a regular domain, A → R is a module-
finite torsion-free extension, and A, R, S have the same characteristic, the natural map
TorAi (M,R)→ TorAi (M,S) vanishes for every A-module M and every i ≥ 1.

We next establish the connection between splinters and rings that satisfy the vanishing
conditions for maps of Tor [Ma15, Corollary 4.5]. We begin with the following lemma:

Lemma 2.10. Let A → B be a module-finite extension. Suppose Q ∈ SpecB lies over
P ∈ SpecA. If P → Q splits as A-modules and depthP A ≥ 2, then A→ B splits compatibly
with P → Q, i.e., there exists a splitting θ: B → A such that θ(Q) = P . In particular,
A/P → B/Q splits as A-modules.

Proof. Let φ: Q → P be a splitting. The exact sequences 0 → Q → B → B/Q → 0 and
0→ P → A induce a commutative diagram:

HomA(B,A) // HomA(Q,A) // Ext1
A(B/Q,A)

HomA(Q,P )
?�

OO
.

Since B/Q is a finitely generated A-module annihilated by P and depthP A ≥ 2, we know
that Ext1

A(B/Q,A) = 0. Hence HomA(B,A) maps onto HomA(Q,A), in particular it maps
onto the image of HomA(Q,P ). Thus there is a map θ: B → A such that θ|Q = φ. We show
that θ has to be a splitting from B to A. Suppose θ(1) = a ∈ A, for every nonzero element
r ∈ P , we have

ra = rθ(1) = θ(r) = φ(r) = r.
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So a = 1 and hence θ is a splitting from B to A such that θ(Q) = P , i.e., θ compatibly splits
P → Q. Finally θ gives a splitting from B/Q→ A/P . This finishes the proof. �

Theorem 2.11. Let S be a homomorphic image of a regular local ring. If S satisfies the
vanishing conditions for maps of Tor, then S is a splinter.

Proof. We write S = A/P such that A is a regular local ring with depthP A ≥ 2 (this can
be achieved, for example, by adding indeterminants). Let S → T be a module-finite domain
extension. Let t1, . . . , tn be a set of generators of T over S = A/P . Each ti satisfies a monic

polynomial fi over S. We lift each fi to A and form the ring B = A[x1,...,xn]
(f1,...,fn)

. We have a

natural surjection B � T with kernel Q ∈ SpecB. It is straightforward to check that Q lies
over P .

We form the ring R = A + Q ⊆ B. Then R is also a module-finite torsion-free extension
of A and we have R/Q = A/P = S. Now we look at the following commutative diagram:

0 // Q // R // S // 0

0 // P //

α

OO

A

β

OO

// S //

∼=

OO

0

.

Tensoring the above diagram with an arbitrary A-module M , we get:

TorA1 (M,R)
ϕM
// TorA1 (M,S) // Q⊗AM // R⊗AM // S ⊗AM // 0

0 // TorA1 (M,S) //

∼=

OO

P ⊗AM //

α⊗idM

OO

A⊗AM

β⊗idM

OO

// S ⊗AM //

∼=

OO

0

.

By a diagram chasing, one can see that

(2.11.1) α⊗ idM is injective⇐⇒ ϕM = 0 and β ⊗ idM is injective.

Since B is finite free over A, we know that A→ B splits as a map of A-modules and thus
A → R also splits. In particular β ⊗ idM is injective. But since S satisfies the vanishing
conditions for maps of Tor, ϕM = 0 and hence (2.11.1) tells us α ⊗ idM is injective for
every M . But this implies P → Q splits by Corollary 5.2 in [HR76] since Q/P is a finitely
generated A-module. Since depthP A ≥ 2, by Lemma 2.10, S = A/P → B/Q = T splits as a
map of A-modules (hence also as a map of S-modules). As this is true for any module-finite
domain extension T of S, S is a splinter. �

Corollary 2.12. In characteristic p > 0, S satisfies the vanishing conditions for maps of
Tor if and only if S is a splinter.

Proof. This follows from Theorem 2.11 and Exercise 1.15. �

We next discuss derived splinters.

Definition 2.13. An integral scheme X is called a derived splinter, if for any proper sur-
jective map f : Y → X, the pullback map OX → Rf∗OY is split in the derived category
D(Coh(X)) of coherent sheaves on X. This is the same as requiring OX → Rf∗OY to split
in D(QCoh(X)), the derived category of quasi-coherent sheaves on X.
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Exercise 2.14. Prove that to show X is a derived splinter, it is enough to check OX →
Rf∗OY is split for all alterations Y → X (i.e., proper generically finite dominant maps with
Y smooth).

Quite obviously, if X is a derived splinter, then it is a splinter. In equal characteristic,
derived splinters are well understood:

Theorem 2.15. (1) In characteristic 0, derived splinters are the same as rational sin-
gularities2 [Kov00], [Bha12].

(2) In characteristic p > 0, derived splinters are the same as splinters [Bha12].

The crucial ingredient in Bhatt’s proof of the above theorem in characteristic p > 0 is a
cohomology annihilating result, which can be viewed as a relative version of Theorem 1.9.

Theorem 2.16. Let f : Y → X be a proper morphism of Noetherian schemes of character-
istic p > 0. Then there exists a finite surjective morphism π: Z → Y such that the pullback
map π∗: τ≥1Rf∗OY → τ≥1Rf∗Rπ∗OZ is the zero map.

It is not hard to prove Theorem 2.15 in characteristic p > 0 given Theorem 2.16. An
alternative proof of Theorem 2.15 in characteristic p > 0 using big Cohen-Macaulayness of
R+ can be found in [Ma15, Remark 5.13].

Proof of Theorem 2.15 (2). Let X be a splinter of characteristic p > 0. Let f : Y → X be a
proper surjective morphism. By Theorem 2.16, there exists a finite surjective morphism π:
Z → Y such that τ≥1Rf∗OY → τ≥1Rf∗Rπ∗OZ is the zero map. Consider the diagram

f∗π∗OZ
// Rf∗Rπ∗OZ

// τ≥1Rf∗Rπ∗OZ
+1
//

f∗OY

OO

// Rf∗OY
//

OO

τ≥1Rf∗OY

0

OO

+1
//

Since the composite map Rf∗OY → τ≥1Rf∗Rπ∗OZ is 0, we have the following diagram of
objects in the derived category:

f∗π∗OZ
// Rf∗Rπ∗OZ

// τ≥1Rf∗Rπ∗OZ
+1
//

Rf∗OY

α

OO

id
// Rf∗OY

//

OO

0

OO

+1
//

Axioms of triangulated category imply the dotted map α exists: i.e., the map

Rf∗OY → Rf∗Rπ∗OZ

factors through f∗π∗OZ . Because f∗π∗OZ is a coherent sheaf of algebras of OX , it corresponds
to the structure sheaf of a finite surjective morphism. Hence OX → f∗π∗OZ admits a splitting
β since X is a splinter. Now β ◦ α gives a splitting Rf∗OY → OX . �

Theorem 2.15 suggests the following question:

Question 2.17. Are splinters and derived splinters the same in mixed characteristic?

The above question is wide open. A weaker question is the following:

2X has rational singularities in characteristic 0 if for a resolution of singularities π: Y → X, Rπ∗OY = OX .
8



Question 2.18. Let (R,m) be a splinter in mixed characteristic. Is it true that R[1/p] has
rational singularities?

Exercise 2.19. Prove that Question 2.17 implies Question 2.18.

Let us mention that recently Bhargav Bhatt proved the derived direct summand conjecture
in [Bha16]:

Theorem 2.20. Let (S, n) be a regular local ring. Then S is a derived splinter.

Below we give a proof of Theorem 2.20 in dimension two. This is different than Bhatt’s
approach, and is known to experts. First of all, the dimension one case is left as an exercise:

Exercise 2.21. Show that if dimS = 1, then S is a derived splinter if and only if S is a
splinter, and also if and only if S is regular.

Theorem 2.22. Let (S, n) be a regular local ring of dimension two. Then S is a derived
splinter.

Proof. Pick f ∈ S part of a regular system of parameters, i.e., S/fS is a regular local ring of
dimension one. By Exercise 2.14, it is enough to check S → Rπ∗OY is split for Y → SpecS
an alteration. Let E be the subscheme of Y defined by f . We have the following commutative
diagram:

S
×f

//

α

��

S //

α

��

S/fS
+1
//

β

��

Rπ∗OY
×f
// Rπ∗OY

// Rπ∗OE
+1
//

Applying R Hom(−, ωS), by duality we have

R Hom(Rπ∗OY , ωS) ∼= Rπ∗ωY ∼= π∗ωY

where the last isomorphism is because Y is smooth of dimension two and we know R1π∗ωY
vanishes since the Grauert-Riemenschneider vanishing holds in dimension two in all charac-
teristics [Lip78]. So the dual of the above commutative diagram becomes:

0 ωS/fSoo ωSoo ωS
×f

oo 0oo

0 π∗ωEoo

β∨
OO

π∗ωYoo

α∨

OO

π∗ωY
×f
oo

α∨

OO

0oo

Since S/fS is a regular local ring of dimension one and thus a derived splinter by Exercise
2.21, we know β is a split injection and hence β∨ is a split surjection. Chasing the diagram
and using Nakayama’s lemma shows that α∨ is surjective. However, since S is regular, ωS is
free and thus α∨ is a split surjection. Therefore α is a split injection. �

Remark 2.23. The proof above does not generalize to higher dimension because we no longer
have Grauert-Riemenschneider vanishing. In fact, it is known that Question 2.17 has a pos-
itive answer in dimension two [BM16], i.e., two dimensional splinters in mixed characteristic
are derived splinters.

The main result in [Ma15] is the following, which largely generalizes Conjecture 1.1 in
characteristic 0.
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Theorem 2.24. In characteristic 0, S satisfies the vanishing conditions for maps of Tor if
and only if S has rational singularities.

Corollary 2.12, Theorem 2.24 and Theorem 2.15 together tell us that, in equal characteris-
tic, rings that satisfy the vanishing conditions for maps of Tor are exactly derived splinters.
It is not known whether this is true in mixed characteristic:

Conjecture 2.25. In mixed characteristic, S satisfies the vanishing conditions for maps of
Tor if and only if S is a derived splinter.

3. Appendix 1: Solution to Exercise 2.7

We split the solution of Exercise 2.7 into two separate theorems.3

Theorem 3.1. For every (V, pV ) complete unramified DVR, R = V [[y,z]]
pa+yb+zc

is not a splinter

when 1
a

+ 1
b

+ 1
c
≤ 1.

Proof. First we claim that, under the hypothesis,

(3.1.1) y(b−1)p ∈ (pp, zp, yb−1pp−1zp−1).

To see this, note that we have

y(b−1)p = yβ(yb)b
(b−1)p
b
c = yβ(−pa − zc)b

(b−1)p
b
c

where β = (b−1)p−bb (b−1)p
b
c. Expanding yβ(−pa−zc)b

(b−1)p
b
c, we see that if a term yβpaαzcγ

is not in (pp, zp), then we must have aα ≤ p− 1, cγ ≤ p− 1. So we have:

b(b− 1)p

b
c = α + γ ≤ p− 1

a
+
p− 1

c
.

Notice that (*) b (b−1)p
b
c = p− dp

b
e ≥ p− (p−1

b
+ 1), combining this with the above we get:

p− (
p− 1

b
+ 1) ≤ p− 1

a
+
p− 1

c
.

Rewrite this we get

p− 1 ≤ p− 1

a
+
p− 1

b
+
p− 1

c
≤ p− 1.

This means, if yβpaαzcγ /∈ (pp, zp), we must have aα = p− 1, cγ = p− 1 and an “=” in (*),

i.e., b | p− 1. Now it is easy to check that when b | p− 1, β = (b− 1)p− bb (b−1)p
b
c = b− 1.

Hence we have yβpaαzcγ = yb−1pp−1zp−1. This finishes the proof of the claim.
Now we prove that R is not a splinter. It suffices to show yb−1 ∈ (p, z)+, i.e., we can write

yb−1 = pv − zu for some u, v integral over R. We write

v =
zu+ yb−1

p

and try to write down explicit equations that u, v satisfy. First of all we have

vp =
1

pp
(zpup +

p−1∑
i=1

(
p

i

)
y(b−1)izp−iup−i + y(b−1)p).

3These computations are well known at least to Anurag Singh.
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I claim that we can rewrite the above equation in the following form:

(3.1.2) vp =
1

pp
(zpup + Lyb−1pp−1zp−1 + ppM + zpN0 +

∑
Λ

c0
εrsty

εprzsut)

where L and c0
εrst are integers, M is a polynomial in y, z, N0 is a polynomial in y, z, u with

the degree on u less than p, and Λ denotes the following:

Λ =


0 ≤ ε ≤ b− 1

0 ≤ t ≤ p− 1

t ≤ s ≤ p− 1

εac+ rbc+ sab+ t(abc− ac− ab) = p(abc− ac) + bc

This is because by (3.1.1), we can write y(b−1)p = Lyb−1pp−1zp−1 + ppM + zpN ′ for L some
integer, and M , N ′ polynomials in y, z. For the other terms

(
p
i

)
y(b−1)izp−iup−i, we can keep

factoring yb = −pa − zc from each y(b−1)i until the exponent of y is less than b, then we
expand it in terms of p and z and we get an expression which either is divisible by zp, or
satisfies Λ. Note that the last condition in Λ is easily checked if we think of

deg y = ac, deg p = bc, deg z = ab, deg u = abc− ac− ab
because under this “grading”, zu+ yb−1 and pa + yb + zc are both “homogeneous”. We can
combine those terms which are divisible by zp with zpN ′ (coming from y(b−1)p) to get zpN0.
We have verified (3.1.2).

We next introduce the following conditions Λk:

Λk =


0 ≤ ε ≤ b− 1

0 ≤ t ≤ p− k − 1

t ≤ s ≤ p− 1

εac+ rbc+ sab+ t(abc− ac− ab) = p(abc− ac) + bc

It is ready to see that Λ = Λ0.
I claim that for every 0 ≤ k ≤ p− 1, there exist Qi, polynomials in y, z, such that

(3.1.3) vp −
k∑
i=1

Qiv
p−i =

1

pp
(zpup + Lyb−1pp−1zp−1 + ppM + zpNk +

∑
Λk

ckεrsty
εprzsut)

where ckεrst are integers, Nk are polynomials in y, z, u with the degree on u less than p.
We prove this by induction on k. When k = 0 this is exactly (3.1.2). Suppose k ≥ 1 and

we have this expression for k − 1, that is, we have

(3.1.4) vp −
k−1∑
i=1

Qiv
p−i =

1

pp
(zpup + Lyb−1pp−1zp−1 + ppM + zpNk−1 +

∑
Λk−1

ck−1
εrsty

εprzsut)

Notice that in
∑
Λk−1

ck−1
εrsty

εprzsut, the highest u terms are ck−1
εrs(k−1)y

εprzsup−k with s ≥ p − k,

because the condition Λk−1 implies s ≥ t and t ≤ p − k. For each such highest u term
ck−1
εrs(k−1)y

εprzsup−k, I claim that r ≥ k. Because otherwise,

ε ≤ b− 1, r ≤ k − 1, s ≤ p− 1, t = p− k,
11



and we will have

εac+ rbc+ sab+ t(abc− ac− ab)
≤ (b− 1)ac+ (k − 1)bc+ (p− 1)ab+ (p− k)(abc− ac− ab)
= (p− k + 1)(abc− ac) + (k − 1)(ab+ bc)

< p(abc− ac) + bc

which contradicts the last condition in Λk−1 (the last < in the above inequalities is obvious
if k = 1, and is a consequence of 1

a
+ 1

b
+ 1

c
≤ 1 when k > 1).

For each term ck−1
εrs(k−1)y

εprzsup−k, we assign ∆εrs = r − k ≥ 0. We let

Qk =
∑

0≤ε≤b,p−k≤s≤p−1

ck−1
εrs(k−1)y

εp∆εrszs−(p−k).

Now we compute Qkv
p−k. First we recall that vp−k:

vp−k =
1

pp−k
(zp−kup−k +

p−k∑
j=1

(
p− k
j

)
y2jzp−k−jup−k−j)

=
1

pp
(pkzp−kup−k +

p−k∑
j=1

pk
(
p− k
j

)
y2jzp−k−jup−k−j).

I claim that we can write Qkv
p−k in the following form:

(3.1.5) Qkv
p−k =

1

pp
(

∑
Λk−1,t=p−k

ck−1
εrs(p−k)y

εprzsup−k +
∑
Λk

c̃kεrsty
εprzsut + zpÑk)

where c̃kεrst are integers and Ñk is a polynomial in y, z, u with degree on u less than p. To
see this, note that multiplying Qk by pkzp−kup−k will give us the first term∑

Λk−1,t=p−k

ck−1
εrs(p−k)y

εprzsup−k

in (3.1.5). While when we multiply ck−1
εrs(k−1)y

εp∆εrszs−(p−k) in Qk with pk
(
p−k
j

)
y2jzp−k−jup−k−j

in vp−k, we get

ck−1
εrs(k−1)

(
p− k
j

)
yε+2jp∆εrs+kzs−(p−k)+p−k−jup−k−j

we can keep factoring yb = −pa − zc from y2j+ε until the exponent of y is less than b, and
when we expand, each term would either be divisible by zp, or satisfy condition Λk, because
the exponent of u never gets larger than p − k − 1, the exponent of z can only be greater
than the exponent of u (since we start with zs−(p−k)+p−k−jup−k−j), and the last equation in
Λk is satisfied because of “homogeneous” reasons.
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The key point is that in (3.1.5), the first term is the same as the highest term of
∑
Λk−1

ck−1
εrsty

εprzsut

in (3.1.4), i.e, those terms with t = p− k. Therefore we have

vp −
k∑
i=1

Qiv
p−i =

1

pp
(zpup + Lyb−1pp−1zp−1 + ppM + zp(Nk−1 − Ñk) +

∑
Λk

(ck−1
εrst − c̃kεrst)yεprzsut)

:=
1

pp
(zpup + Lyb−1pp−1zp−1 + ppM + zpNk +

∑
Λk

ckεrsty
εprzsut)

where ckεrst = ck−1
εrst − c̃kεrst are integers, and Nk = Nk−1 − Ñk is a polynomial in y, z, u with

degree on u less than p. This finishes the induction step, and hence the proof of (3.1.3).
Now we apply (3.1.3) with k = p− 1, as the condition Λp−1 implies t = 0, we get

(3.1.6) vp −
p−1∑
i=1

Qiv
p−i =

1

pp
(zpup + Lyb−1pp−1zp−1 + ppM + zpNp−1 +

∑
Λp−1

cp−1
εrs0y

εprzs).

Each yεprzs inside (3.1.6) satisfies ε ≤ b − 1 and s ≤ p − 1, so by the Λp−1 condition, we
know rbc ≥ p(abc− ac) + bc− (p− 1)ab− (b− 1)ac. Dividing by abc, we get

r − 1

a
≥ p− 1− p− 1

c
− p− 1

b

from which we know r ≥ p because 1
a

+ 1
b

+ 1
c
≤ 1.

Therefore, we can rewrite (3.1.6) as

vp −
p−1∑
i=1

Qiv
p−i =

1

pp
(zpup + Lyb−1pp−1zp−1 + ppM̃ + zpNp−1)

= M̃ +
Lyb−1zp−1

p
+
zp(up +Np−1)

pp
(3.1.7)

where M̃ is a polynomial in y, z and Np−1 is a polynomial in y, z, u with degree on u less
than p.

At this point, recall that v = zu+yb−1

p
, so we have

Lyb−1zp−1

p
= Lzp−1(v − zu

p
) = Lzp−1v − zpLpp−1u

pp
.

Plugging in this into (3.1.7), we get

vp −
p−1∑
i=1

Qiv
p−i − Lzp−1v = M̃ +

zp(up +Np−1 − Lpp−1u)

pp
(3.1.8)

:= M̃ +
zp(up + Ñ)

pp

where Ñ = Np−1 − Lpp−1u is a polynomial in y, z, u with degree on u less than p.

Finally, let u be the solution of the monic polynomial (remember the degree of u in Ñ is
less than p):

up + Ñ = 0
13



setting v = zu+yb−1

p
, we know from (3.1.8) that v satisfies

vp −
p−1∑
i=1

Qiv
p−i − Lzp−1v = M̃

which is a monic polynomial of v with coefficients in R (remember Qi, M̃ are polynomials
in y, z). Therefore, we can let u, v be the solutions of the system{

up + Ñ = 0

vp −
∑p−1

i=1 Qiv
p−i − Lzp−1v = M̃.

Then u, v are both integral over R and yb−1 = pv − zu hence yb−1 ∈ (p, z)+ as desired. �

Remark 3.2. Another way to prove Theorem 3.1 is to use the fact that two dimensional
splinters in mixed characteristic are derived splinters [BM16], in particular they are pseudo-

rational. But it is easy to prove that R = V [[y,z]]
pa+yb+zc

is not pseudo-rational when 1
a

+ 1
b
+ 1

c
≤ 1,

using an explicit computation by desingularization.

We next prove the other direction in Exercise 2.7. This follows from the following theorem
(we use W (Fp) to denote the ring of Witt vectors over Fp).

Theorem 3.3. If 1
a

+ 1
b

+ 1
c
> 1, then for p� 0,

R =
W (Fp)[[y, z]]
pa + yb + zc

is a direct summand of some regular local ring. Hence it is a splinter for p� 0.

Proof. By the classical theory of Du Val singularities [Rei], C[x,y,z]
xa+yb+zc

is isomorphic to the ring

of invariants of C[u, v] under a certain finite group action when 1
a

+ 1
b

+ 1
c
> 1. In particular,

we know that there is a map
C[x, y, z]

xa + yb + zc
→ C[u, v]

where x→ f(u, v), y → g(u, v), z → h(u, v), such that C[u, v] is module-finite over the base.
Since f, g, h have only finitely many coefficients, we know that there exists a number field
Q(λ) such that f, g, h ∈ Q(λ)[u, v]. Since the coefficients of f, g, h involve only finitely many
denominators, we know for p � 0, f, g, h ∈ Z(p)(λ)[u, v], and the relation fa + gb + hc = 0

still holds in Z(p)(λ)[u, v]. As Z(p)(λ) ⊆ W (Fp), we know that for p� 0, there are elements

f, g, h ∈ W (Fp)[u, v] such that fa + gb + hc = 0.
Now we define a map

R =
W (Fp)[[y, z]]
pa + yb + zc

→ S =
W (Fp)[[u, v]]

p− f(u, v)

where y → g(u, v), z → h(u, v). It is readily seen that this map is well-defined, because
fa + gb +hc = 0 in W (Fp)[u, v]. It is straightforward to check that R→ S is a module-finite
extension with S a (ramified) regular local ring of dimension 2. In fact, one can check that

rankR S = rank C[x,y,z]
xa+yb+zc

C[u, v].
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From the construction it is obvious that the latter one is the same as rankW (Fp)[x,y,z]
xa+yb+zc

W (Fp)[u, v]

where x, y, z are mapped to f, g, h (and killing p − x does not change the rank). Therefore
for p� 0, the trace map will give us a splitting from S to R. �

4. Appendix 2: Further observations on Conjecture 1.1

Recently, Hochster proposed the following new conjecture [Hoc16, Conjecture 14.5]:

Conjecture 4.1 (Next to top local cohomology is almost zero). Let (R,m) be a complete
local domain of dimension d of mixed characteristic. Then Hd−1

m (R+) is killed by mR+.

It was pointed out in [Hoc16] that this conjecture implies the direct summand conjecture.
We want to observe here that, with the recent solution of the direct summand conjecture
[And16a] [Bha16], the above conjecture implies the vanishing conjecture for maps of Tor.

Theorem 4.2. Conjecture 4.1 implies Conjecture 1.1.

To establish this we need a couple lemmas. The first one was taken from Hochster-Huneke
[HH95], and Ranganathan [Ran00].

Lemma 4.3. In any characteristic, to prove Conjecture 1.1, it suffices to prove it for i = 1,
and we can assume (A,m) is complete local, R is a complete local domain, and S = A/x
where x ∈ m−m2.

The second lemma reduces Conjecture 1.1 to a vanishing on local cohomology.

Lemma 4.4. To prove Conjecture 1.1, it suffices to show TorA1 (E,R) → TorA1 (E, S) is the
zero map where E is the injective hull of the residue field of A. That is, if dimA = dimR = d,
it is enough to prove Hd−1

m (R)→ Hd−1
m (S) is the zero map.

Proof. By Lemma 4.3, we may assume (A,m) is complete local and S = A/x. Let A →
R → S be as in Conjecture 1.1. Let Q be the kernel of R � S. We have the following
commutative diagram:

0 // Q // R // S // 0

0 // (x) //

α

OO

A

β

OO

// S //

∼=

OO

0

.

Tensoring the above diagram with an arbitrary A-module M , we get:

TorA1 (M,R)
ϕM
// TorA1 (M,S) // Q⊗AM // R⊗AM // S ⊗AM // 0

0 // TorA1 (M,S) //

∼=

OO

(x)⊗AM //

α⊗idM

OO

A⊗AM

β⊗idM

OO

// S ⊗AM //

∼=

OO

0

.

Since A is regular, by the direct summand conjecture (which holds in all characteristics now
thanks to [And16a] [Bha16]), β is split and thus β⊗ idM is always an injection. By a diagram
chasing (which is entirely similar as in the proof of Theorem 2.11), we have

(4.4.1) α⊗ idM is injective⇐⇒ ϕM = 0.

Now suppose TorA1 (E,R)→ TorA1 (E, S) is the zero map, that is, ϕE = 0. By (4.4.1), this
implies α⊗ idE is injective. Hence the map (x)→ Q is split because (x) is isomorphic to A
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as an A-module and A is complete. But then we have α⊗ idM is injective for every M , thus
by (4.4.1) again, ϕM = 0 for every A-module M . Therefore Conjecture 1.1 holds for i = 1.
Lemma 4.3 thus implies Conjecture 1.1 holds in general. The last assertion of the lemma
follows because the map TorA1 (E,R) → TorA1 (E, S) can be identified with the natural map
Hd−1

m (R)→ Hd−1
m (S). �

Proof of Theorem 4.2. By Lemma 4.4, to prove Conjecture 1.1, it is enough to show that for
every R � S with R complete local domain and S = R/P is complete regular local, where
dimR = d and dimS = d− 1, the map Hd−1

m (R)→ Hd−1
m (S) vanishes. Now we look at the

following commutative diagram

Hd−1
m (R+) // Hd−1

m (S+)

Hd−1
m (R) //

OO

Hd−1
m (S)

OO

Assuming Conjecture 4.1, the image of Hd−1
m (R) in Hd−1

m (S+) is killed by mS+ . We pick a
regular system of parameters x1, . . . , xd−1 of S. If Hd−1

m (R)→ Hd−1
m (S) does not vanish, then

its image must contain the socle [ 1
x1···xd−1

]. Therefore it is enough to show that the image of

[ 1
x1···xd−1

] in Hd−1
m (S+) is not killed by mS+ . This follows formally from the direct summand

conjecture and we give an argument below.
If S has equal characteristic p > 0, then S ∼= K[[x1, . . . , xd−1]]. In this case clearly

[ 1
x1···xd−1

] in Hd−1
m (S+) is not killed by mS+ (basically because 1 is not in the tight closure

of (x1, . . . , xd−1)). If S has mixed characteristic, then we can pick S ′ ↪→ S a module-finite
extension such that S ′ = V [[y2, . . . , yd−1]] for (V, pV ) a complete unramified DVR. Since
[ 1
py2···yd−1

] is a multiple of [ 1
x1···xd−1

], it is enough to show that the image of [ 1
py2···yd−1

] in

Hd−1
m (S+) is not killed by mS+ . But we have S ′ ↪→ S ′′ = V [[y

1/p
2 , . . . , y

1/p
d−1]]. Since S ′′ is still

a complete regular local ring, the direct summand conjecture ([And16a] or [Bha16]) tells us
S ′′ → S+ splits and thus [ 1

py
1/p
2 ···y1/pd−1

] is not zero in Hd−1
m (S+). This implies [ 1

py2···yd−1
] is not

killed by y
(p−1)/p
2 · · · y(p−1)/p

d−1 . In particular it is not killed by mS+ . �
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