Hypergeometric systems I: motivation or What Gauss knew of variations of Hodge structures

Uli Walther

Local cohomology RTG Chicago, February 2015

Outline

Elliptic curves

2 Elliptic integrals

Elliptic curves

• In \mathbb{C}^2 consider, with $t \in \mathbb{C}$,

$$E_t = \operatorname{Var}(y^2 - \underbrace{x(x-1)(x-t)}).$$
=: $f_t(x)$

- Singular locus: $y^2 f_t(x) = 0 = 2y = f_t'(x)$. For $t \notin \{0, 1, \infty\}$, f_t and f_t' have no common zero.
- E_t has closure $\bar{E}_t \subseteq \mathbb{P}^2_{\mathbb{C}}$ defined by $Y^2Z X(X Z)(X tZ) = 0$.
- $\bar{E}_t \cap \infty = \operatorname{Var}(Y^2Z X(X Z)(X tZ), Z) = \operatorname{Var}(X^3, Z).$
- In $y \neq 0$, \bar{E}_t given by z' x'(x' z')(x' tz') = 0. Elementary analysis: $z' \approx x'^3$ near (0,0), so \bar{E}_t smooth.

Elliptic curves II

$$E_t = \operatorname{Var}(y^2 - \underbrace{x(x-1)(x-t)}_{=: f_t(x)}).$$

Consider

 $\begin{array}{ccc} & E_t & \to & \mathbb{C}, \\ (x,y) & \mapsto & (x) \end{array}$

(generically 2:1).

graph near $0, 1, t, \infty$:

Elliptic curves II 1/2: global picture

In particular, $\bar{E}_t^{\infty} \cong \mathbb{S}^1 \times \mathbb{S}^1$.

Differential forms on $Var(y^2 - x(x-1)(x-t))$

4

$$E_t = \operatorname{Var}(y^2 - f_t(x)).$$

- Special 1-form on E_t : $\omega_t = dx/y = dx/\sqrt{f_t(x)} = 2dy/f_t'(x)$.
- If $f_t(x) = 0$ then $f'_t(x) \neq 0$, so ω_t global on E_t .
- at infinity: in coordinates where $y \neq 0$, ω is dx' x'dz'/z'. But, near (0,0): $z' \approx x'^3$, hence $dz' \approx 3x'^2dx'$ and so

$$dx' - x'dz'/z' \approx dx'(1 - 3x'x'^2/x'^3) = -2dx'$$

is form of "first kind" (global).

ullet Conclusion: \bar{E}_t compact complex manifold with global nonvanishing 1-form. "Calabi-Yau curve". (In higher dim, also require simply connected.)

Integration on
$$\bar{E}_t = \text{Var}(y^2 - x(x-1)(x-t))$$

• Form of "second kind": $\omega' = x(x-1)dx/2y^3 = \omega/(x-t)$.

- Near x = t: $\omega' = \omega/(x t) = 2dy/f' \cdot (x t) = 2dy/y^2$ integrable.
- λ_1, λ_2 generators of $H_1(\bar{E}_t) \cong \mathbb{Z} \oplus \mathbb{Z}$.
- Periods:

$$I_{1,1} = \int_{\lambda_1} \omega, \qquad I_{2,1} = \int_{\lambda_2} \omega, \qquad I_{1,2} = \int_{\lambda_1} \omega', \qquad I_{2,2} = \int_{\lambda_2} \omega'.$$

ullet These are elliptic integrals, multivalued functions on $ar{E}_t$.

(Forms of third kind have residue near pole, like dx/x.)

Integration II: periods as a family

•
$$\frac{d}{dt}(\omega) = \omega'$$
, $\frac{d}{dt}(\omega') = \frac{d}{dt}(\frac{\omega}{x-t}) = 2\frac{\omega'}{x-t}$ (product rule).

Better:

Better:
$$\frac{d}{dt}(\omega') = \underbrace{\frac{1}{4t(1-t)}}_{p(t)}\omega + \underbrace{\frac{-1+2t}{t(1-t)}}_{q(t)}\omega' + d\left(\frac{y}{2(x-t)^2t(1-t)}\right).$$

• Now λ any path on E_t , set $I_1(\lambda)=\int_\lambda \omega$, $I_2(\lambda)=\int_\lambda \omega'$. Then

$$\frac{d}{dt}I_1(\lambda) = I_2(\lambda)$$

$$\frac{d}{dt}I_2(\lambda) = pI_1(\lambda) + qI_1(\lambda).$$

• The ω -integrals $I_{1,1}=I_1(\lambda_1)$ and $I_{1,2}=I_1(\lambda_2)$ are solutions to

$$z'' - qz' - pz = 0.$$

Integration III: more on periods

• General hypergemetric diffeq:

$$z'' + \frac{c - (a+b+1)t}{t(1-t)}z' - \frac{ab}{t(1-t)}z = 0.$$
 (1)

$$a = 1/2 = b$$
, $c = 1$.

Solutions:

$$F_{1} = \sum_{n=0}^{\infty} \frac{[a]_{n}[b]_{n}}{[c]_{n}} \frac{t^{n}}{n!}$$

$$F_{2} = -i \cdot \sum_{n=0}^{\infty} \frac{[a]_{n}[b]_{n}}{[c]_{n}} \frac{(1-t)^{n}}{n!}.$$

• Which linear comb gives the ω -integrals for $\lambda = \lambda_1, \lambda_2$?

Integration IV: monodromy from solutions

Monodromy from solutions:

how do solutions vary when t varies?

- Fix the basis $F=(F_1,F_2)$ for (1) in a generic point. Analytic continuation along any loop $\lambda\in\pi_1(\mathbb{P}^1_\mathbb{C}\smallsetminus\{0,1,\infty\})$ gives $M_\lambda\cdot F,\ M_\lambda\in \mathrm{Gl}(2,\mathbb{C}).$
- Around $0 \in \mathbb{C}$: $M = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$, Around $1 \in \mathbb{C}$: $M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.

Integration V: monodromy from deforming curves

Monodromy from moving curves: how do integrals vary when we look at the \bar{E}_t as a family?

Note:
$$y^2 - x(x-1)(x-t) = (y^2 - x^3 - x^2) - t(x(x-1))$$
.

- $\bar{E}_t \cong \mathbb{S}^1 \times \mathbb{S}^1$ with homology generators λ_1, λ_2 .
- Consider $\pi \colon \mathbb{P}^2_{\mathbb{C}} \setminus \{(1,0,0),(1,1,0),(0,0,1)\} \to \mathbb{P}^1_{\mathbb{C}}$, $t_0 = zx(x-z), \ t_1 = zy^2 x^3 x^2z$. Then $\pi^{-1}(t_0/t_1) = \bar{E}_{t_0/t_1}$.
- Locally in t, π is a projection $E \times U \rightarrow U$, and identifies neighboring $H_1(\bar{E}_t)$.
- The loops λ_1, λ_2 generate $H_1(\bar{E}_t)$.
- Induces $H_1(\bar{E}_t) \to H_1(\bar{E}_t)$, given by 2×2 -matrix M.

10

Integration VI: comparing monodromies

- Lengthy computation: around t = 0, $M = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$, around t = 1, $M = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$.
- we find: $I_{1,1} \leftrightarrow F_1$, $I_{1,2} \leftrightarrow F_2$ up to scalars.
- Periods are hypergeometric functions.

Reference: Brieskorn/Knörrer, "Ebene algebraische Kurven"

Afterthought: classifying elliptic curves

$$\pi: \mathbb{P}^1_\mathbb{C} \smallsetminus \{0,1,\infty\}
i t \mapsto (\int_{\lambda_1} \omega_t, \int_{\lambda_2} \omega_t) \in \mathbb{P}^1_\mathbb{C}.$$

- Let $\pi(t) = \tau_t$, consider $\Lambda_t = \mathbb{Z} + \mathbb{Z}\tau_t \subseteq \mathbb{C}$.
- Let $Q_t = \mathbb{C}/\Lambda_t$, τ_t the "modulus". (\leadsto :moduli spaces")
- When is $Q_t \cong Q_{t'}$?

If
$$(I_{1,1}(t), I_{1,2}(t)) = M \cdot (I_{1,1}(t), I_{1,2}(t))$$

with $M \in GL(2, \mathbb{Z})$.

Fundamental domain:

Afterthought: classifying elliptic curves

On Q_t have Weierstraß \mathfrak{P} -function

$$\mathfrak{P}(z,\tau_t) = \frac{1}{z^2} + \sum_{m+2+n^2\neq 0} \left\{ \frac{1}{(z-m-n\tau_t)^2} - \frac{1}{(m+n\tau_t)^2} \right\}.$$

$$\mathfrak{P}, \frac{d}{dt}(\mathfrak{P})$$
 behave like x, y on E_t if $\tau = I_{1,1}(t)/I_{1,2}(t)$.